Novel approach to controlled protein crystallization through ligandation of yttrium cations
نویسندگان
چکیده
Crystal structure determination of macromolecules is often hampered by the lack of crystals suitable for diffraction experiments. This article describes a protocol to crystallize the acidic protein bovine -lactoglobulin in the presence of yttrium to yield high-quality crystals that belong to a new space group. The yttrium ions not only are used to engineer the crystallization, but are an integral part of the crystal lattice and can therefore be used to solve the phase problem using anomalous dispersion methods. Protein crystallization conditions were first optimized using an experimental phase diagram in the protein and salt concentration plane. Crystal growth strongly depends on the position in the phase diagram, and the best crystals grow near the phase transition boundaries. The structure analysis demonstrates the specific binding of yttrium ions to surface-exposed glutamate and aspartate side chains contributed by different molecules in the crystal lattice. By bridging molecules in this manner, contacts between molecules are formed that enable the formation of a stable crystal lattice. The potential application of this strategy to the crystallization of other acidic proteins is discussed on the basis of the universal features of the phase behavior of these proteins and the interactions induced by multivalent ions.
منابع مشابه
Production of yttrium aluminum silicate microspheres by gelation of an aqueous solution containing yttrium and aluminum ions in silicone oil
Background: Radioactive yttrium glass microspheres are used for liver cancer treatment. These yttrium aluminum silicate microspheres are synthesized from yttrium, aluminum and silicone oxides by melting. There are two known processes used to transform irregular shaped glass particles into microspheres, these ‘spheroidization by flame’ and ‘spheroidization by gravitational fall...
متن کاملBioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium.
The incorporation of yttrium in bioactive glasses (BGs) could lead to a new generation of radionuclide vectors for cancer therapy, with high biocompatibility, controlled biodegradability and the ability to enhance the growth of new healthy tissues after the treatment with radionuclides. It is essential to assess whether and to what extent yttrium incorporation affects the favourable properties ...
متن کاملSurface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers
We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of r...
متن کاملCations in control: crystal engineering polyoxometalate clusters using cation directed self-assembly.
The synthetic engineering of anionic polyoxometalate (POM) clusters with predefined properties tailored to specific applications is a great challenge using routine "one-pot" POM syntheses. Under such conditions, difficulties often arise from the multitude of complex reaction pathways and self-assembly processes occurring in solution. In this respect the major role of the charge balancing cation...
متن کاملIon-activated attractive patches as a mechanism for controlled protein interactions
The understanding of protein interactions to control phase and nucleation behavior of protein solutions is an important challenge for soft matter, biological and medical research. Here, we present ion bridges of multivalent cations between proteins as an ion-activated mechanism for patchy interaction that is directly supported by experimental findings in protein crystals. A deep understanding o...
متن کامل